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ABSTRACT
Background  COVID-19 has strained healthcare 
systems globally. In this and future pandemics, providers 
with limited critical care experience must distinguish 
between moderately ill patients and those who will 
require aggressive care, particularly endotracheal 
intubation. We sought to develop a machine learning-
informed Early COVID-19 Respiratory Risk Stratification 
(ECoRRS) score to assist in triage, by providing a 
prediction of intubation within the next 48 hours based 
on objective clinical parameters.
Methods  Electronic health record data from 3447 
COVID-19 hospitalizations, 20.7% including intubation, 
were extracted. 80% of these records were used as the 
derivation cohort. The validation cohort consisted of 
20% of the total 3447 records. Multiple randomizations 
of the training and testing split were used to calculate 
confidence intervals. Data were binned into 4-hour 
blocks and labeled as cases of intubation or no 
intubation within the specified time frame. A LASSO 
(least absolute shrinkage and selection operator) 
regression model was tuned for sensitivity and sparsity.
Results  Six highly predictive parameters were identified, 
the most significant being fraction of inspired oxygen. 
The model achieved an area under the receiver operating 
characteristic curve of 0.789 (95% CI 0.785 to 0.812). At 
90% sensitivity, the negative predictive value was 0.997.
Discussion  The ECoRRS score enables non-specialists 
to identify patients with COVID-19 at risk of intubation 
within 48 hours with minimal undertriage and enables 
health systems to forecast new COVID-19 ventilator 
needs up to 48 hours in advance.
Level of evidence  IV.

INTRODUCTION
The COVID-19 global pandemic has caused unprec-
edented levels of population illness and healthcare 
resource utilization.1–4 Infection with the causative 
agent of COVID-19, SARS-CoV-2, can range from 
asymptomatic5 6 to life-threatening,4 7 8 and illness 
requiring mechanical ventilation carries a high 
mortality rate of 25% to 60%.7 9 10

The combination of heavy illness burden and 
finite resources has made triage a necessity in many 
health systems, with a particular strain on intensive 
care units (ICUs).1 3 11 Patients with acute respira-
tory failure may require endotracheal intubation 
and placement on a ventilator for respiratory 
support, interventions which are only performed 
in an ICU setting. Appropriate triage can reduce 
unnecessary ICU admissions and promote alloca-
tion of resources to the sickest patients. Factors 

shown to be associated with severe COVID-19 
include advanced age,12 13 cardiovascular disease, 
chronic kidney disease, diabetes, and laboratory 
findings such as lymphopenia, thrombocytopenia, 
and elevated inflammatory markers.14–18

Machine learning has been used to further the 
understanding of COVID-19, including for disease 
diagnosis19–26 and transmission.27–30 Further, an April 
2020 systematic review by Wynants et al31 discussed 
50 published models for predicting disease progres-
sion or severity, but recommended none for clinical 
practice due methodological limitations including 
small sample sizes, inadequate training versus 
testing cohorts, or other factors leading to high risk 
of bias or limited external validity. A January 2021 
review of artificial intelligence (AI) applications for 
COVID-19 by Tayarani et al19 reviewed 14 addi-
tional studies of machine learning for predicting 
COVID-19 severity and found promise in works 
using demographics, laboratory values, and other 
electronic health record (EHR) data. Online calcu-
lators have been published with some studies.15 16

However, there remains a lack of standardization 
on how to predict an individual’s disease trajectory 
and risk of severe illness. Thus, assessing the rela-
tive weight of risk factors in any particular patient’s 
case has remained largely a provider-level task. Our 
goal in this work is to develop a tool to aid in risk 
assessment for progression to severe disease. Specif-
ically, we aimed to analyze demographic and clinical 
data with statistical and machine learning tech-
niques, and to develop a prediction score, usable 

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?
	⇒ The COVID-19 pandemic has strained 
healthcare resources and highlighted the 
importance of appropriate triage to allocate 
resources most efficiently.

WHAT THIS STUDY ADDS
	⇒ This retrospective modeling study derives a 
six-variable model for predicting the risk of 
respiratory failure requiring intubation, in any 
48-hour period, for patients with COVID-19, 
with an area under the receiver operating 
characteristic curve of 0.8.

HOW MIGHT THIS STUDY AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This streamlined model allows non-experts to 
assist in accurate triage to an appropriate level 
of care and can aid in system-level planning for 
bed and staffing needs.
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at the bedside by non-experts, to stratify the risk of progression 
to intubation within the next 48 hours for patients hospitalized 
with COVID-19.

METHODS
Methods and results are reported in accordance with the 2015 
statement for Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis.32

Data source
De-identified patient-level data were provided via a hospital-
affiliated clinical data warehouse. Patients testing positive for 
SARS-CoV-2 at three academic medical centers in Arizona 
between January and April 2020 were included. Extracted vari-
ables included age, sex, vital signs, laboratory values (including 
blood counts, electrolytes, blood gas results, and inflammatory 
markers), oxygen requirements, and timing of intubation.

Patient comorbidities were extracted to describe the study 
cohort. However, knowledge of comorbidities is dependent 
on prior interaction with the healthcare system and on patient 
reporting or availability of medical records. This information 
may be unavailable at the urgent point of care. Accordingly, 
comorbidity information was omitted from model training to 
build a score robust to the incomplete data that may be available 
in times of health system crisis. Further, data on self-identification 
of race and ethnicity were not reliably available within the elec-
tronic medical record (EMR), so race and ethnicity were not 
considered in modeling.

Data preprocessing and missing data
Data were reformatted into 4-hour time blocks (rows). A 4-hour 
interval was chosen to match the frequency of routine vital 
sign checks in non-ICU units, representing the highest data 
sampling rate that was likely to be available across the popula-
tion. Vital signs were then summarized as mean, minimum, and 
maximum for each block, as well as the initial value recorded 
on presentation for each patient. Laboratory values, measured 
less frequently, were represented as current and initial values. 
Respiratory support other than intubation was quantified by 
fraction of inspired oxygen (FiO2) and oxygen delivery device 
(ie, nasal cannula, face mask, high-flow humidified cannula, etc). 
Where necessary, FiO2 was estimated as 0.21 (room air) plus an 
additional 0.04 for every 1 L/min increase in oxygen flow rate.33 
Each “row” (4-hour block) was labeled with whether the patient 
required intubation within the subsequent 48 hours, as well as 
the number of hours from the end of that time block until the 
time of their intubation. Where values were missing, the last 
measured vital signs were carried forward for up to 12 hours 
and the laboratory values for up to 72 hours. Otherwise, missing 
fields were left blank. Rows with greater than 85% missing values 
were excluded. Parameters were excluded from modeling if they 
were populated in fewer than 15% of rows. This left 67 parame-
ters for use in model training, including the initial and summary 
values as separate model inputs. Bivariate comparisons between 
the intubated and non-intubated groups were done using the χ2 
test for categorical data and the Mann-Whitney U test for contin-
uous data. A complete list of the parameters initially considered 
in modeling, prior to elimination of those with low prevalence in 
the data set, is available in the online supplemental information. 
Finally, the data were randomly split into 80% training and 20% 
testing sets.

Modeling
The primary outcome used in model development was whether 
or not the patient was intubated within 48 hours of the end of 

each 4-hour time block. A patient’s physiological state during 
each time block was considered as a separate model input, such 
that each “row” formed an independent training example. 
Model performance was assessed by the area under the receiver 
operating characteristic curve (AUC), sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV), and 
qualitatively for ease of application in clinical practice.

LASSO regression
A least absolute shrinkage and selection operator (LASSO) 
regularized linear regression model was trained.34 The 
regularization parameter α had little impact on AUC, but 
affected the number of non-zero weights (sparsity) and 
specificity of the model. We noted a sharp drop in speci-
ficity as α approached 1, so α=0.1 was selected to minimize 
the number of non-zero weights without sacrificing speci-
ficity. This resulted in the inclusion of 10 to 15 predictors, 
depending on the training and testing data split. Feature 
importance was then explored by rerunning the model 
across 100 randomizations of the training and testing data 
split. Thirteen parameters were used in >50% of model 
runs, and these were then used in an elimination algorithm 
where model performance was tested after dropping each 
parameter in turn (figure 1). Features with minimal (<0.002) 
reduction in AUC or with high potential for clinical redun-
dancy (such as current temperature and maximum tempera-
ture) were removed, leaving only seven predictors: fraction 
of inspired oxygen (FiO2), initial red blood cell count (RBC_
initial), maximum oxygen saturation for the 4-hour block 
(SpO2-max), lymphocyte count (lymph#), initial modified 
Sequential Organ Failure Assessment score (mSOFA_initial), 
current temperature (temp), and body weight (weight). 
LASSO was run again with just these seven predictors, and 

Figure 1  Impact of the top 13 parameters on LASSO model 
performance during training. Model AUC is plotted after dropping each 
of the top 13 parameters in turn. A lower postelimination AUC indicates 
the feature is more important in the model. Parameters yielding minimal 
reduction (<0.002) or an increase in AUC on elimination were removed 
from the final model. The dotted line, “baseline test AUC”, shows the 
AUC of the model with all 13 parameters included. AUC, area under 
the receiver operating characteristic curve; FiO2, fraction of inspired 
oxygen; LASSO, least absolute shrinkage and selection operator; 
lymph#, lymphocyte count; mSOFA_initial, initial modified Sequential 
Organ Failure Assessment score; RBC_initial, initial red blood cell count; 
SpO2-max, maximum oxygen saturation for the 4-hour block; temp, 
temperature; weight, body weight.
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all predictors except mSOFA_initial had non-zero coefficient 
values, resulting in a model with just six predictors.

Model performance was then assessed on the testing 
cohort. The CIs for LASSO performance were bootstrapped 
using the empirical bootstrap,35 where the testing set was 
resampled with replacement 1000 times, and 95% confi-
dence bands were calculated and plotted using the simulta-
neous joint confidence regions method.36

XGBoost
An eXtreme Gradient Boosting (XGBoost) model was 
trained.37 Model tuning initially focused on sensitivity 
and sparsity. Bracketing algorithms were used to select the 
optimal values for scale_pos_weight (to more heavily weight 
cases of intubation, given the preponderance of negative 
examples in the data set), maximum tree depth (to optimize 
model complexity), as well as the regularization parameter 

γ. Given the goal of a bedside-usable prediction score, we 
initially focused on building a single-tree model. However, 
this yielded performance inferior to LASSO regression, 
with an AUC of 0.74, sensitivity of 0.88, and specificity of 
0.60, so a more complex model using 100 trees was tuned. 
Tuning this model for maximum sensitivity rather than spar-
sity (γ=0) yielded a model with improved performance, as 
described in the Results section. Feature importance was 
explored by gain in model performance.

RESULTS
Cohort
There were 3447 patient encounters meeting the inclusion 
criteria, of which 20.7% required intubation. The baseline 
cohort characteristics regarding comorbidities and all param-
eters used in model training are presented in table 1. After 

Table 1  Cohort initial characteristics

Characteristics Total (N=3447) Not intubated (n=2733) Intubated (n=714) P value

Demographics

 � Age 49.4 47.0 58.4 0.01

 � Percent female 51.5 54.3 40.6 <0.01

 � Weight (kg) 89.3 89.2 89.6 0.37

 � Body mass index 32.8 32.6 33.6 <0.01

Comorbidities (not used in modeling)

 � Chronic Obstructive Pulmonary Disease (%) 7.9 6.1 14.8 <0.01

 � Asthma (%) 13.3 13.3 13.3 <0.01

 � Heart failure (%) 11.3 7.2 26.9 <0.01

 � Diabetes (%) 34.7 29.4 54.9 <0.01

Labs and vital signs

 � Bilirubin (mg/dL) 0.65 0.64 0.69 <0.01

 � BUN (mg/dL) 24.33 23.60 27.14 0.40

 � BUN:creatinine ratio 23.85 23.55 25.01 0.02

 � Calcium (mg/dL) 8.68 8.73 8.49 <0.01

 � Chloride (mEq/L) 101.38 101.42 101.25 0.01

 � D-dimer (ng/mL) 188.57 173.81 245.09 <0.01

 � Fraction of inspired oxygen (%) 58.96 59.05 58.63 <0.01

 � Glasgow Coma Scale 13.39 13.68 12.29 <0.01

 � Glomerular filtration rate (mL/min) 82.09 83.27 77.59 <0.01

 � Glucose (mg/dL) 146.36 143.33 157.98 0.35

 � Hematocrit (%) 35.86 35.67 36.61 0.01

 � Hemoglobin (g/dL) 11.83 11.77 12.06 0.03

 � Lymphocyte count (109/L) 1.29 1.32 1.17 <0.01

 � Lymphocytes (%) 16.40 17.15 13.52 <0.01

 � Mean corpuscular hemoglobin (g/dL) 29.26 29.26 29.24 <0.01

 � Mean corpuscular hemoglobin concentration (g/dL) 32.53 32.55 32.46 0.46

 � Mean corpuscular volume (fL) 89.88 89.84 90.01 <0.01

 � Mean platelet volume (fL) 10.52 10.51 10.58 <0.02

 � mSOFA score 3.62 3.18 5.30 0.28

 � Oxygen saturation (%) 93.85 93.93 93.54 0.16

 � Platelet count (109/L) 257.96 257.30 260.48 <0.01

 � Red blood cell count (1012/L) 4.07 4.06 4.09 0.35

 � Red cell distribution width (%) 14.76 14.80 14.62 0.02

 � Red cell distribution width, SD (fL) 47.86 47.95 47.50 <0.01

 � Temperature (°F) 98.42 98.40 98.50 <0.01

 � White cell count (thousand/µL) 89.24 89.15 89.57 0.37

The table shows the distribution of comorbidities and mean initial physiological metrics used in model training for the overall cohort, intubated patients and non-intubated 
patients.
BUN, blood urea nitrogen; mSOFA, modified Sequential Organ Failure Assessment.
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data preprocessing as discussed in the Methods section, the 
average missing data rate was 57% across the 4-hour time 
blocks, with an SD of 30%. We considered all patients who 
did not have a documented intubation to be in the non-
intubated cohort, so there were no unclassified patients with 
respect to intubation.

LASSO regression
LASSO modeling, optimized for sensitivity and sparsity (ie, 
minimization of the number of inputs required), yielded an 
AUC of 0.798, with 95% CI of 0.785 to 0.812 (figure  2). 
At the 90% sensitivity operating point, we observed a spec-
ificity of 61.7% (95% CI 0.524 to 0.710), NPV of 0.997 
(95% CI 0.996 to 0.998), and PPV of 0.040 (95% CI 0.033 
to 0.047). The six parameters included in the final LASSO 
model were FiO2, RBC_initial, SpO2-max, current lymph#, 
current temperature (temp), and body weight (weight). The 
relative weights of each predictor are shown in figure  3. 
FiO2 was the most significant predictor, followed by 
maximum oxygen saturation (SpO2). The score is calculated 
by summing the value of each predictor multiplied by its 
coefficient and adding the constant (C0). If necessary, FiO2 
is estimated as 0.21 (room air) plus an additional 0.04 for 
each 1 L/min increase in oxygen flow rate.33 Positive values 
predict intubation within the next 48 hours, and negative 
values predict no intubation within the next 48 hours. The 
greater the magnitude of the score, the greater the certainty 
of the prediction.

XGBoost
XGBoost classification tree modeling, optimized for sensi-
tivity and trained on all parameters in the data set, yielded 
an AUC of 0.86, with a sensitivity of 0.99 at a specificity 
of 0.74. The NPV was 0.999 and the PPV was 0.082. Of 
the parameters, FiO2 was consistently the most important 
by gain in model performance. The final model used 100 

unique trees which combine to produce the prediction. A 
subsection of one of these tree diagrams is shown in figure 4.

Early COVID-19 Respiratory Risk Stratification prediction 
score
Both models were highly unlikely to undertriage patients, with 
NPV of 99.7% (LASSO) and 99.9% (XGBoost). The XGBoost 
model, however, achieved approximately double the PPV of 
LASSO and thus is less likely to overtriage patients (ie, indicate a 
need for intubation when the patient will not be intubated within 
the specified time frame). Given its complexity, the XGBoost 
model would require clinicians to enter a large number of vari-
ables into a specialized software program to see a prediction; this 
presents a significant barrier to rapid deployment for emergency 
triage. In contrast, the LASSO model, with only six parame-
ters, can be used by any practitioner with a simple calculator 
or spreadsheet program. Thus, we present the LASSO model as 
the Early COVID-19 Respiratory Risk Stratification (ECoRRS) 
score. The coefficients and constant to calculate the ECoRRS 
score are shown in table 2. Positive results predict the need for 
intubation within 48 hours, and negative results predict no intu-
bation within that time frame. The greater the magnitude of the 
score, the greater the certainty of the prediction.

DISCUSSION
We analyzed EHR data with two methods, LASSO regularized 
linear regression and XGBoost classification trees, to predict 
intubation within the next 48 hours for patients hospitalized 
with COVID-19. Both models achieved high sensitivity and 
very low rates of undertriage. XGBoost performed as well or 
better on all metrics compared with LASSO. However, given the 
marked simplicity and sparsity of LASSO relative to XGBoost, 
the LASSO model, which uses six objective inputs, is presented 
as the ECoRRS score.

Figure 2  ROC for the final LASSO model (ECoRRS score). The model 
predicts intubation within the subsequent 48 hours based on six clinical 
parameters. The AUC is 0.789 (95% CI 0.785 to 0.812). 95% confidence 
bands (dotted curves) are shown, calculated via the simultaneous joint 
confidence regions method. AUC, area under the receiver operating 
characteristic curve; ECoRRS, Early COVID-19 Respiratory Risk 
Stratification; LASSO, least absolute shrinkage and selection operator; 
ROC, receiver operating characteristic curve.

Figure 3  Parameter weights for the final LASSO model (ECoRRS 
score). The six parameters included in the final LASSO model are shown 
versus their model weights: FiO2, RBC_initial, SpO2-max, lymph#, 
temp, and weight. The model is applied by summing the value of each 
parameter multiplied by its coefficient and adding the constant 0.08. 
Positive values predict intubation within the next 48 hours, and negative 
values predict no intubation within the next 48 hours. FiO2 was the most 
significant predictor of intubation. ECoRRS, Early COVID-19 Respiratory 
Risk Stratification; FiO2, fraction of inspired oxygen; LASSO, least 
absolute shrinkage and selection operator; lymph#, current lymphocyte 
count; RBC_initial, initial red blood cell count at admission; SpO2-
max, maximum oxygen saturation for the 4-hour block; temp, current 
temperature; weight, body weight.
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The ECoRRS score can be used to predict intubation and fore-
cast resource utilization up to 48 hours in advance, which has 
implications for both individual patient care and for system-wide 
planning and staffing. The score tolerates overtriage to maximize 
sensitivity, identifying a subpopulation “at risk” of intubation. At 
the system level, however, hospitals can multiply the number of 
patients scoring positive on ECoRRS by the model’s PPV and 
arrive at a relatively precise estimate of the number of inpatients 
likely to newly require a ventilator within the next 48 hours. 
This can facilitate timely redistribution of staff and resources to 
the areas of greatest need.

With regard to individual patient care, our framework relies 
on objective measurements and not patient history or comor-
bidities, which may be unavailable at the urgent point of care. 
Additionally, relying on objective measures, rather than subjec-
tive assessments by healthcare providers, supports the utility 
of ECoRRS as a triage tool for use by personnel with minimal 
healthcare training when systems are overburdened.

Multiple other investigators have sought to develop predictive 
algorithms for COVID-19 disease severity. Notably, Marcos and 
colleagues16 developed an open-source online calculator using 

just nine variables to classify patients as high or low risk for 
severe disease, using a methodology similar to that presented 
here. Our model differs in that it provides prediction of intuba-
tion specifically within a 48-hour window and does not rely on 
knowledge of comorbidities to predict disease trajectory.

This study has multiple limitations. First, the indications 
for intubation were not protocolized and the decision to intu-
bate was at the treating clinician’s discretion. Thus, differences 
in individual practice may have impacted the study’s results. 
Further, COVID-19 treatment has evolved since our data collec-
tion period (January–April 2020). Prone positioning, which 
has historically been used as an adjunct for intubated patients 
with severe acute respiratory distress syndrome,38 39 came into 
practice to improve oxygenation in non-intubated patients with 
COVID-19. Proning increased in popularity during our study 
period, but data on the precise rate and intensity of proning 
in our cohort were not available. Studies have shown that 
prone positioning improves oxygenation and possibly reduces 
mortality in COVID-19, but it is not clearly associated with a 
reduced need for intubation.40 41 As the most powerful predictor 
of need for intubation in our cohort was FiO2, it is likely that 
the benefits of proning would be reflected in FiO2 requirements, 
allowing the score to remain useful with increased utilization of 
prone positioning.

Additionally, remdesivir was introduced for COVID-19 under 
emergency use authorization in May 2020 and full US Food and 
Drug Administration approval followed in October 2020.42 43 
However, subsequent studies have shown minimal impact of 
this drug on disease trajectory,44 and we suspect remdesivir’s 
introduction to have little impact on the ECoRRS score’s gener-
alizability. Convalescent plasma was also introduced in Spring 
2020,45 46 with significant hopes for modifying disease progres-
sion, although large trials subsequently found this treatment 
too was ineffective.47 48 In contrast, glucocorticoids in patients 
requiring supplemental oxygen became standard of care during 
our study period, after the RECOVERY trial.49 The impact of 
this major therapeutic is likely captured only in the latter half 
of our cohort.

Further, our data source is linked to both strengths and signif-
icant limitations. With assistance from a hospital-affiliated clin-
ical data warehouse, we extracted real-world EHR data. Such 
data are notoriously challenging and often include high rates of 
missing or incorrect values.50 Our average missing data rate of 
57% is similar to that reported in previously reported studies, 
including an evaluation of blood pressure documentation in the 
EHR which was found to vary in missing rate from 0.1% to 
52%.50 These missing data may have led to bias in our conclu-
sions and model performance. However, it also may reflect 
incomplete information that healthcare workers operate with on 
a regular basis.

Finally, our 3447 patients were from three academic hospitals 
located within the same state. Validation studies in a wider multi-
center cohort are needed to better assess the external validity of 
the ECoRRS score. The authors plan to undertake this using data 
from geographically diverse and non-academic hospitals within 
the same health network, which spans 6 states and 30 facilities.

The contrast of the user-friendliness of the LASSO model 
versus the accuracy of the XGBoost model highlights an active 
challenge in healthcare machine learning and informatics. 
Although numerous algorithms have been developed for health-
care, few have been deployed in the clinical setting, leading some 
to question the hopes for AI in medicine.51–53 Although EHR 
systems remain closed environments, the use of novel algorithms 
will require clinicians to manually enter data into a secondary 

Figure 4  Representative portion of a single tree from the XGBoost 
model. The final model contains 100 unique trees which combine to 
yield the model prediction. Terminal node (“leaf”) values represent 
the log odds of the probability of intubation. To arrive at the predicted 
probability, the values of the appropriate leaves of each tree in the 
model are summed and transformed into a probability using the logistic 
function. XGBoost, eXtreme Gradient Boosting; HCT, hematocrit.

Table 2  Coefficients and constant to calculate the ECoRRS score

Predictor Coefficient

FiO2 (as fraction) 7.060×10−4

Initial red blood cell count (million/µL) 1.950×10−5

SpO2-max (%) 1.045×10−4

Current lymphocyte count (thousand/µL) 6.765×10−5

Temperature (°C) 2.955×10−5

Body weight (kg) −1.117×10−5

Constant (C0) 0.08

Based on the LASSO model, the score is calculated by summing the value of each 
predictor multiplied by its coefficient and adding the constant (C0). If necessary, 
FiO2 is estimated as 0.21 (room air) plus an additional 0.04 for each 1 L/min 
increase in oxygen flow rate.33 Positive values predict intubation within the next 
48 hours, and negative values predict no intubation within the next 48 hours. The 
greater the magnitude of the score, the greater the certainty of the prediction.
ECoRRS, Early COVID-19 Respiratory Risk Stratification; FiO2, fraction of inspired 
oxygen; SpO2-max, maximum oxygen saturation for the 4-hour block.
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system or calculator, which creates a substantial barrier to algo-
rithm deployment and also to building the infrastructure for 
ongoing model evaluation with new populations. A future with 
enhanced collaboration between EHR developers, researchers, 
and regulatory organizations54 could facilitate more comprehen-
sive model training, testing, and validation. Such collaboration 
could also allow algorithms processing large numbers of data 
inputs, such as our XGBoost model, to find utility in clinical 
practice.

CONCLUSION
The ECoRRS score enables non-specialists to identify patients 
with COVID-19 at risk of intubation within 48 hours with 
minimal undertriage and enables health systems to forecast new 
COVID-19 ventilator needs up to 48 hours in advance.
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