Skip to main content
Log in

Microtubule-associated protein 2 (MAP2)—a promising approach to diagnosis of forensic types of hypoxia-ischemia

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The loss of neuronal immunoreactivity of the cytoskeletal microtubule-associated protein 2 (MAP2) is known to be a marker of—at least—transient functional failure of neurons following ischemia. Because there are no specific neuropathological findings in forensic types of acute hypoxia-ischemia, detection of this relevant cause of death is often complicated and a reliable ischemic biomarker would be of great importance. We therefore investigated the neuronal immunoreactivity of MAP2 in human cases of forensic significance. A control group (n=27) was compared to a group of cases of hypoxia-ischemia (n=45), comprising death due to hanging (n=19), drowning (n=14) and carbon monoxide (CO) poisoning (n=12). Using immunohistochemical staining, the percentage of MAP2-positive neurons in the hippocampus (areas CA1–CA4) and frontal cortex (layers II–VI) was evaluated and compared. The hypoxia-ischemia group showed decreased MAP2 immunostaining in the hippocampal areas CA2–CA4 (P<0.05) and in cortical layers II–VI (P<0.001) compared to controls. Most vulnerable regions seem to be the hippocampal CA4 area and cortical layers III–V. Within the hypoxia-ischemia group, death due to CO poisoning was characterized by the lowest MAP2 immunoreactivity. The hypoxic-ischemic groups differ from controls by a distinct decrease of MAP2 immunostaining. Thus, the loss of MAP2 immunoreactivity may support the diagnosis of neuronal injury in forensic types of hypoxia-ischemia, although investigations on postmortem tissue must be interpreted cautiously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akulinin VA, Dahlstrom A (2003) Quantitative analysis of MAP2 immunoreactivity in human neocortex of three patients surviving after brain ischemia. Neurochem Res 28:373–378

    Article  PubMed  Google Scholar 

  2. Auer RN (2000) Pure hypoxic and ischemic brain insults. In: Oehmichen M (ed) Brain hypoxia and ischemia. Research in legal medicine, 1st edn, vol 24. Schmidt-Römhild, Lübeck, pp 27–39

  3. Auer RN, Siesjö BK (1988) Biological differences between ischemia, hypoglycemia, and epilepsy. Ann Neurol 24:699–707

    Article  PubMed  Google Scholar 

  4. Auer RN, Sutherland G (2002) Hypoxia and related conditions. In: Graham D, Lantos P (eds) Greenfield’s neuropathology, 7th edn, vol 1. Edward Arnold, London, pp 233–280

  5. Bernaudin M, Nouvelot A, MacKenzie ET, Petit E (1998) Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp Neurol 150:30–39

    Article  PubMed  Google Scholar 

  6. Brierly JB (1976) Cerebral hypoxia. In: Blackwood W, Corsellis JAN (eds) Greenfield’s neuropathology. Year Book Medical, Chicago, pp 43–85

  7. Evers P, Uylings HBM (1994) Microwave-stimulated antigen retrieval is pH and temperature dependent. J Histochem Cytochem 42:1555–1563

    PubMed  Google Scholar 

  8. Evers P, Uylings HBM (1997) An optimal antigen retrieval method suitable for different antibodies on human brain tissue stored for several years in formaldehyde fixative. J Neurosci Methods 72:197–207

    Article  PubMed  Google Scholar 

  9. Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J (2003) Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation. J Neurotrauma 20:929–941

    Article  PubMed  Google Scholar 

  10. Hirokawa N (1994) Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol 6:74–81

    Article  PubMed  Google Scholar 

  11. Hossmann KA (2000) Pathophysiology of brain resuscitation after cardiac arrest. In: Oehmichen M (ed) Brain hypoxia and ischemia. Research in legal medicine, 1st edn, vol 24. Schmidt-Römhild, Lübeck, pp 145–164

  12. Huh JW, Raghupathi R, Laurer HL, Helfaer MA, Saatman KE (2003) Transient loss of microtubule-associated protein 2 immunoreactivity after moderate brain injury in mice. J Neurotrauma 20:975–984

    Article  PubMed  Google Scholar 

  13. Inamura K, Olsson Y, Siesjö BK (1987) Substantia nigra damage induced by ischemia in hyperglycemic rats. A light and electron microscopic study. Acta Neuropathol (Berl) 75:131–139

    Google Scholar 

  14. Irving EA, McCulloch J, Dewar D (1997) The effect of postmortem delay on the distribution of microtubule-associated proteins τ, MAP2, and MAP5 in the rat. Mol Chem Neuropathol 30:253–271

    PubMed  Google Scholar 

  15. Ito U, Spatz M, Walker JT Jr, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32:209–223

    Google Scholar 

  16. Jenkins LW, Povlishock JT, Lewelt W, Miller JD, Becker DP (1981) The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol (Berl) 55:205–220

    Google Scholar 

  17. Johnson GVW, Jope RS (1992) The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 33:505–512

    Article  PubMed  Google Scholar 

  18. Kalimo H, Olsson Y, Paljärvi L, Söderfeldt B (1982) Structural changes in brain tissue under hypoxic-ischemic conditions. J Cereb Blood Flow Metab 2:19–22

    Google Scholar 

  19. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  Google Scholar 

  20. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 62:201–208

    Google Scholar 

  21. Kitagawa K, Matsumoto M, Niinobe M, Mikoshiba K, Hata R, Ueda H, Handa N, Fukunaga R, Isaka Y, Kimura K, Kamada T (1989) Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage—immunohistochemical investigation of dendritic damage. Neuroscience 31:401–411

    Article  PubMed  Google Scholar 

  22. Kitamura O, Gotohda T, Ishigami A, Tokunaga I, Kubo S, Nakasono I (2005) Effect of hypothermia on postmortem alterations in MAP2 immunostaining in the human hippocampus. Leg Med (Tokyo) 7:24–30

    Article  Google Scholar 

  23. Knight B (2004) Forensic pathology, 3rd edn. Arnold, London

  24. Kwei S, Jiang C, Haddad GG (1993) Acute anoxia-induced alterations in MAP2 immunoreactivity and neuronal morphology in rat hippocampus. Brain Res 620:203–210

    Article  PubMed  Google Scholar 

  25. Leifer D, Kowall NW (1993) Immunohistochemical patterns of selective cellular vulnerability in human cerebral ischemia. J Neurol Sci 119:217–228

    Article  PubMed  Google Scholar 

  26. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  Google Scholar 

  27. Malinak C, Silverstein FS (1996) Hypoxic-ischemic injury acutely disrupts microtubule-associated protein 2 immunostaining in neonatal rat brain. Biol Neonate 69:257–267

    PubMed  Google Scholar 

  28. Oehmichen M (1990) Neuropathologie der forensisch relevanten Formen des Erstickens. In: Brinkmann B, Püschel K (eds) Ersticken. Fortschritte in der Beweisführung, 1st edn. Springer, Berlin, pp 151–157

  29. Oehmichen M, Meissner C (2000) Forensic neuropathological aspects of cerebral anoxia/ischemia and hypoxia/hypoxemia. In: Oehmichen M (ed) Brain hypoxia and ischemia. Research in legal medicine, 1st edn, vol 24. Schmidt-Römhild, Lübeck, pp 13–25

  30. Oehmichen M, Meissner C, Wurmb-Schwark N von, Schwark T (2003) Methodical approach to brain hypoxia/ischemia as a fundamental problem in forensic neuropathology. Leg Med (Tokyo) 5:190–201

    Article  Google Scholar 

  31. Oehmichen M, Auer RN, König HG (2006) Forensic Neuropathology and associated neurology. Springer, Berlin Heidelberg New York

  32. Ota A, Ikeda T, Ikenoue T, Toshimori K (1997) Sequence of neuronal responses assessed by immunohistochemistry in the newborn rat brain after hypoxia-ischemia. Am J Obstet Gynecol 177:519–526

    Article  PubMed  Google Scholar 

  33. Petito CK, Pulsinelli WA (1984) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 4:194–205

    PubMed  Google Scholar 

  34. Piantadosi CA, Zhang J, Demchenko IT (1997) Production of hydroxyl radical in the hippocampus after CO hypoxia or hypoxic hypoxia in the rat. Free Radic Biol Med 22:725–732

    Article  PubMed  Google Scholar 

  35. Qi JP, Wu AP, Wang DS, Wang LF, Li SX, Xu FL (2004) Correlation between neuronal injury and caspase-3 after focal ischemia in human hippocampus. Chin Med J (Engl) 117:1507–1512

    Google Scholar 

  36. Schwab C, Bondada V, Sparks DL, Cahan LD, Geddes JW (1994) Postmortem changes in the levels and localization of microtubule-associated proteins (tau, MAP2 and MAP1B) in the rat and human hippocampus. Hippocampus 4:210–225

    Article  PubMed  Google Scholar 

  37. Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748

    PubMed  Google Scholar 

  38. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR (1993) Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J Histochem Cytochem 41:1599–1604

    PubMed  Google Scholar 

  39. Shi SR, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49:931–937

    PubMed  Google Scholar 

  40. Simon RP (1999) Hypoxia versus ischemia. Neurology 52:7–8

    PubMed  Google Scholar 

  41. Smith ML (2000) Injury-determining factors and cellular mechanisms for ischemic damage in the brain. In: Oehmichen M (ed) Brain hypoxia and ischemia. Research in legal medicine, 1st edn, vol 24. Schmidt-Römhild, Lübeck, pp 59–64

  42. Suurmeijer AJH, Boon ME (1993) Notes on the application of microwaves for antigen retrieval in paraffin and plastic tissue sections. Eur J Morphol 31:144–150

    PubMed  Google Scholar 

  43. Tomimoto H, Yanagihara T (2000) Vulnerability of dendrites and nerve cell bodies in cerebral ischemia. In: Oehmichen M (ed) Brain hypoxia and ischemia. Research in legal medicine, 1st edn, vol 24. Schmidt-Römhild, Lübeck, pp 65–84

  44. Torvik A (1984) The pathogenesis of watershed infarcts in the brain. Stroke 15:221–223

    PubMed  Google Scholar 

  45. Trojanowski JQ, Schuck T, Schmidt ML, Lee VMY (1989) Distribution of phosphate-independent MAP2 epitopes revealed with monoclonal antibodies in microwave-denatured human nervous system tissues. J Neurosci Methods 29:171–180

    Article  PubMed  Google Scholar 

  46. Tucker RP (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res Brain Res Rev 15:101–120

    Article  PubMed  Google Scholar 

  47. Vanicky I, Balchen T, Diemer NH (1995) Alterations in MAP2 immunostainability after prolonged complete brain ischaemia in the rat. Neuroreport 7:161–164

    PubMed  Google Scholar 

  48. Yamamoto K, Morimoto K, Yanagihara T (1986) Cerebral ischemia in the gerbil: transmission electron microscopic and immunoelectron microscopic investigation. Brain Res 384:1–10

    Article  PubMed  Google Scholar 

  49. Yamaoka Y, Shimohama S, Kimura J, Fukunaga R, Taniguchi T (1993) Neuronal damage in the rat hippocampus induced by in vivo hypoxia. Exp Toxicol Pathol 45:205–209

    PubMed  Google Scholar 

  50. Yanagihara T, Brengman JM, Mushynski WE (1990) Differential vulnerability of microtubule components in cerebral ischemia. Acta Neuropathol 80:499–505

    Article  PubMed  Google Scholar 

  51. Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90:1193–1199

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Susanne Rath for her kind assistance with tissue preparation as well as Silke Tychsen-Langer for excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Oehmichen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, J., Meissner, C. & Oehmichen, M. Microtubule-associated protein 2 (MAP2)—a promising approach to diagnosis of forensic types of hypoxia-ischemia. Acta Neuropathol 110, 579–586 (2005). https://doi.org/10.1007/s00401-005-1090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-1090-9

Keywords

Navigation