Skip to main content
Log in

Glutamate and GABA Imbalance Following Traumatic Brain Injury

  • Pediatric Neurology (P Pearl, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008;9(3):206–21.

    Article  CAS  PubMed  Google Scholar 

  2. Kandel E. Principles of neural science, fifth edition. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. McGraw Hill Professional; 2013. p210-306.

  3. Castro-Alamancos MA, Connors BW. Thalamocortical synapses. Prog Neurobiol. 1997;51(6):581–606.

    Article  CAS  PubMed  Google Scholar 

  4. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75:S24–33.

    Article  PubMed  Google Scholar 

  5. Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci (CMLS). 2004;61(6):657–68.

    Article  CAS  Google Scholar 

  6. Lowenstein DH. Epilepsy after head injury: an overview. Epilepsia. 2009;50:4–9.

    Article  PubMed  Google Scholar 

  7. Weiss GH MSA, Vance SC, Grafman JH, Jabbari B. Predicting Posttraumatic Epilepsy in Penetrating Head Injury. Arch Neurol Am Med Assoc. 1986;43(8):771–3.

    Article  Google Scholar 

  8. Salazar A, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology. 1985. pp. 1406–14.

  9. Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester Epidemiology Project. Mayo Clin Proc. 1996;71(6):570–5.

    Article  CAS  PubMed  Google Scholar 

  10. Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, et al. Epileptogenesis in experimental models. Epilepsia. 2007;48(s2):13–20.

    Article  PubMed  Google Scholar 

  11. Castile L, Collins CL, McIlvain NM, Comstock RD. The epidemiology of new versus recurrent sports concussions among high school athletes, 2005–2010. Br J Sports Med. 2012;46(8):603–10.

    Article  PubMed  Google Scholar 

  12. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg. 2010;113(3):564–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434–41. This work highlights a potential neuroprotective mechanism by restoring the glutamate transporter with ceftriaxone.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Folkersma H, Dingley JCF, van Berckel BN, Rozemuller A, Boellaard R, Huisman MC, et al. Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation. BioMed Central Ltd; 2011;8(1):67.

  15. Goforth PB, Ren J, Schwartz BS, Satin LS. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol. 2011;105(5):2350–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Luo P, Fei F, Zhang L, Qu Y, Fei Z. The role of glutamate receptors in traumatic brain injury: implications for postsynaptic density in pathophysiology. Brain Res Bull. 2011;85(6):313–20.

    Article  CAS  PubMed  Google Scholar 

  17. Krebs AH. Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymatic hydrolysis of glutamine in animal tissues. Biochem J. 1953;29(8):1951–69.

    Google Scholar 

  18. Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59(6):861–72.

    Article  CAS  PubMed  Google Scholar 

  19. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, et al. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience. 2008;157(1):80–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Melone M, Bellesi M, Conti F. Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia. 2009;57(1):108–17.

    Article  PubMed  Google Scholar 

  21. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res. 2014.

  22. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol Lond. 1983;334:33–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem. 2013;126(2):191–202.

    Article  CAS  PubMed  Google Scholar 

  24. Featherstone RE, Shin R, Kogan JH, Liang Y, Matsumoto M, Siegel SJ. Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: implications for schizophrenia prodromal population. Neurobiol Dis. Elsevier B.V; 2015; 73(C):289–95.

  25. Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438(7065):185–92.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Q, He S, Hu XL, Yu J, Zhou Y, Zheng J, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci. 2007;27(3):542–52.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou X, Moon C, Zheng F, Luo Y, Soellner D, Nuñez JL, et al. N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation. J Neurosci Res. 2009;87(12):2632–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, et al. NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int. Elsevier Ltd; 2012;60(5):506–16.

  29. Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci. 2002;5(9):833–4.

    Article  CAS  PubMed  Google Scholar 

  30. Hardingham GE, Bading H. The yin and yang of NMDA receptor signalling. Trends Neurosci. 2003;26(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  31. Patel TP, Ventre SC, Geddes-Klein D, Singh PK, Meaney DF. Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury. J Neurosci. 2014;34(12):4200–13. This elegant study begins to examine the underlying mechanism for changes in connectivity following TBI.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304(5673):1021–4.

    Article  CAS  PubMed  Google Scholar 

  33. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–40.

    Article  CAS  PubMed  Google Scholar 

  34. Chater TE. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. 2014 24:1–14.

  35. Sanderson DJ, Good MA, Seeburg PH, Sprengel R, Rawlins JNP, Bannerman DM. The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory. Progress in Brain Research. 2008. 20 p.

  36. Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. Humana Press; 2005;32(3):237–49.

  37. Isaac JTR, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007;54(6):859–71.

    Article  CAS  PubMed  Google Scholar 

  38. Seidenman KJ, Steinberg JP, Huganir R, Malinow R. Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci. 2003;23(27):9220–8.

    CAS  PubMed  Google Scholar 

  39. Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. New York: University Press; 2002.

    Google Scholar 

  40. Olsen RW, Sieghart W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56(1):141–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci. 2005;6(3):215–29.

    Article  CAS  PubMed  Google Scholar 

  42. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  43. Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, et al. Alterations of GABAA and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res. Elsevier B.V; 2011; 95(1–2):20–34.

  44. Gonchar Y, Wang Q, Burkhalter A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat. 2007;1:3.

    PubMed Central  PubMed  Google Scholar 

  45. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol. 1989;61(4):747–58.

    CAS  PubMed  Google Scholar 

  47. Bramlett H, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurologic outcomes. J Neurotrauma. 2014 26:140826105716007.

  48. Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89(4):507–18.

    Article  CAS  PubMed  Google Scholar 

  49. Yokobori, S & Bullock, MR. Pathobiology of traumatic brain injury. In: Zasler ND, Katz DI & Zafonte RD (Eds) Brain Injury Medicine, 2nd Edition. Demos Medical Publishing; 2012. p137-147

  50. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89(6):971–82.

    Article  CAS  PubMed  Google Scholar 

  51. Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73(6):889–900.

    Article  CAS  PubMed  Google Scholar 

  52. Xu S, Zhuo J, Racz J, Shi D, Roys S, Fiskum G, et al. Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study. J Neurotrauma. 2011;28(10):2091–102.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Harris JL, Yeh H-W, Choi I-Y, Lee P, Berman NE, Swerdlow RH, et al. Altered neurochemical profile after traumatic brain injury:. Nature Publishing Group; 2012; 32(12):2122–34.

  54. Henry LC, Tremblay S, Boulanger Y, Ellemberg D, Lassonde M. Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma. 2010;27(1):65–76.

    Article  PubMed  Google Scholar 

  55. Saatman KE, Duhaime A-C, Bullock R, Maas AIR, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lai PC, Huang YT, Wu CC, Lai C-J, Wang PJ, Chiu TH. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J Biomed Sci. BioMed Central Ltd; 2011; 18(1):69.

  57. Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke. 2006;38(1):177–82.

    Article  PubMed  Google Scholar 

  58. Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, et al. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience. 2008;153(1):329–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7.

    Article  CAS  PubMed  Google Scholar 

  60. Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, et al. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex. 2014. This study looks at the relationship of glutamate and GABA changes in cell physiology and populations of GABA interneurons.

  61. Kumar A, Zou L, Yuan X, Long Y, Yang K. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res. 2002;67(6):781–6.

    Article  CAS  PubMed  Google Scholar 

  62. Park Y, Luo T, Zhang F, Liu C, Bramlett HM, Dietrich WD, et al. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(10):1642–9. This study examines potential mechanisms of NMDA receptor changes following TBI.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Giza CC, SantaMaria NS, Hovda DA. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma. 2006;23(6):950–61.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Fineman I, Giza CC, Nahed BV, Lee SM, Hovda DA. Inhibition of neocortical plasticity during development by a moderate concussive brain injury. J Neurotrauma. 2000;17(9):739–49.

    Article  CAS  PubMed  Google Scholar 

  65. Ip EY-Y, Giza CC, Griesbach GS, Hovda DA. Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. J Neurotrauma. 2002;19(5):573–85.

    Article  PubMed  Google Scholar 

  66. Giza CC, Griesbach GS, Hovda DA. Experience-dependent behavioral plasticity is disturbed following traumatic injury to the immature brain. Behav Brain Res. 2005;157(1):11–22.

    Article  PubMed  Google Scholar 

  67. Wang Y, Hameed MQ, Rakhade SN, Iglesias AH, Muller PA, Mou D-L, et al. Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. NeuroReport. 2014;25(12):954–9. This study examines down-stream changes in immediate early genes that follow TBI and highlights the NMDA receptor as a potential mediator of these changes.

    Article  CAS  PubMed  Google Scholar 

  68. Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu B-R. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab. 2006;26(12):1507–18.

    Article  CAS  PubMed  Google Scholar 

  69. Bell JD, Park E, Ai J, Baker AJ. PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ. 2009;16(12):1665–80.

    Article  CAS  PubMed  Google Scholar 

  70. Bao Y-H, Bramlett HM, Atkins CM, Truettner JS, Lotocki G, Alonso OF, et al. Post-traumatic seizures exacerbate histopathological damage after fluid-percussion brain injury. J Neurotrauma. 2011;28(1):35–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Raible DJ, Frey LC, Cruz Del Angel Y, Russek SJ, Brooks-Kayal AR. GABA A receptor regulation after experimental traumatic brain injury. J Neurotrauma. 2012;29(16):2548–54. This study examines potential mechanisms of GABA-A receptor changes following TBI.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci. 2010;17(1):38.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17(10):3727–38.

    CAS  PubMed  Google Scholar 

  74. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci. 1992;12(12):4846–53.

    CAS  PubMed  Google Scholar 

  75. Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS. Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry. 2012;71(4):335–43. This paper provides molecular underpinings of enhanced fear-learning following traumatic brain injury in an animal model. This may have applications to understanding post-traumatic disorder in the setting of TBI.

  76. Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, et al. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29(16):2564–75.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Meyer DL, Davies DR, Barr JL, Manzerra P, Forster GL. Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp Neurol. 2012;235(2):574–87. Elsevier Inc.

    Article  PubMed  Google Scholar 

  78. Villamar MF, Santos Portilla A, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation: Technology at the Neural Interface. Blackwell Publishing Inc; 2012; 15(4):326–38

  79. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012;27(4):274–92.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  81. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.

    Article  PubMed  Google Scholar 

  82. De Beaumont L, Tremblay S, Poirier J, Lassonde M, Théoret H. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb Cortex. 2012;22(1):112–21. This paper identifies abnormal GABA mediated inhibition following repeated concussions in humans. The authors suggest this may be a mechanism of impaired learning following multiple concussions.

  83. Tremblay S, Beaulé V, Proulx S, Tremblay S, Marjańska M, Doyon J, et al. Multimodal assessment of primary motor cortex integrity following sport concussion in asymptomatic athletes. Clinical Neurophysiology. Int Fed Clin Neurophysiol. 2014;125(7):1371–9.

    Article  Google Scholar 

  84. Hicks RR, Smith DH, Lowenstein DH, Saint Marie R, McIntosh TK. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993;10(4):405–14.

    Article  CAS  PubMed  Google Scholar 

  85. Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, et al. Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience. 2011;194(C):208–19. Elsevier Inc.

    Article  CAS  PubMed  Google Scholar 

  86. Hameed MQ, Hseieh TH, Goodrich GS, Morales-Quezada JL, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury preserves GAD-1 expression in rat cortex after TBI. Washington, DC; 2014

  87. Lee HH, Hsieh T-H, Hameed MQ, Hensch TK, Rotenberg A. Loss of parvalbumin interneurons underlies impaired cortical inhibition in post-traumatic epileptogenesis. San Diego, CA; 2013.

  88. Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia. Blackwell Publishing Ltd; 50(s2):30–40.

  89. Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, et al. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res. 2013;103(2–3):180–94. Elsevier B.V.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Hoskison MM, Moore AN, Hu B, Orsi S, Kobori N, Dash PK. Persistent working memory dysfunction following traumatic brain injury: evidence for a time-dependent mechanism. Neuroscience. 2009;159(2):483–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Osteen CL, Giza CC, Hovda DA. Injury-induced alterations in N-methyl-d-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience. 2004;128(2):305–22.

    Article  CAS  PubMed  Google Scholar 

  92. Eisenberg MA, Meehan WP, Mannix R. Duration and course of post-concussive symptoms. Pediatrics. Am Acad Pediatr. 2014;133(6):999–1006.

    Google Scholar 

  93. Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics. 2013;132(1):8–17.

    Article  PubMed  Google Scholar 

  94. Collins M, Lovell MR, Iverson GL, Ide T, Maroon J. Examining concussion rates and return to play in high school football players wearing newer helmet technology: a three-year prospective cohort study. Neurosurg. 2006;58(2):275–86. discussion275–86.

    Article  Google Scholar 

  95. Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2549–55.

    Article  CAS  PubMed  Google Scholar 

  96. Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.

    Article  CAS  PubMed  Google Scholar 

  97. Mishra M, Singh R, Mukherjee S, Sharma D. Dehydroepiandrosterone’s antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters. Epilepsy Res. 2013;106(1–2):83–91.

    Article  CAS  PubMed  Google Scholar 

  98. Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage. 2014;99:237–43. This study, although not on TBI patients, highlights the ability to directly impact concentrations of neurotransmitters with tDCS and TMS.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Réjean M. Guerriero declares no conflict of interest.

Christopher C. Giza has received one-time consultancy fees from Alcobra and Pearson TLC. Dr. Giza has also received grants from the NCAA-DOD, NIH/NINDS, Joseph Drown Foundation, Today’s and Tomorrow’s Children Fund, UCLA Brain Injury Research Center, the UCLA Steve Tisch BrainSPORT Program, speaker honoraria from multiple academic institutions, royalties from Blackwell Publishing, payment for development of educational presentations from the Medical Education Speakers Bureau, and paid travel accommodations from the NCAA, USSF, MLS, and the California State Athletic Commission.

Alexander Rotenberg declares a pending award related to TBI and posttraumatic loss of GABAergic cortical inhibition (NIH NINDS 1R01NS088583). Dr. Rotenberg is also supported by NIH, Department of Defense, CURE, and the Harvard Translational Research Program.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réjean M. Guerriero.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerriero, R.M., Giza, C.C. & Rotenberg, A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr Neurol Neurosci Rep 15, 27 (2015). https://doi.org/10.1007/s11910-015-0545-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0545-1

Keywords

Navigation