Skip to main content
Log in

Trauma, PTSD, and the Developing Brain

  • Disaster Psychiatry: Trauma, PTSD, and Related Disorders (MJ Friedman, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

PTSD in youth is common and debilitating. In contrast to adult PTSD, relatively little is known about the neurobiology of pediatric PTSD, nor how neurodevelopment may be altered. This review summarizes recent neuroimaging studies in pediatric PTSD and discusses implications for future study.

Recent Findings

Pediatric PTSD is characterized by abnormal structure and function in neural circuitry supporting threat processing and emotion regulation. Furthermore, cross-sectional studies suggest that youth with PTSD have abnormal frontolimbic development compared to typically developing youth. Examples include declining hippocampal volume, increasing amygdala reactivity, and declining amygdala-prefrontal coupling with age.

Summary

Pediatric PTSD is characterized by both overt and developmental abnormalities in frontolimbic circuitry. Notably, abnormal frontolimbic development may contribute to increasing threat reactivity and weaker emotion regulation as youth age. Longitudinal studies of pediatric PTSD are needed to characterize individual outcomes and determine whether current treatments are capable of restoring healthy neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. McLaughlin KA, Koenen KC, Hill ED, Petukhova M, Sampson NA, Zaslavsky AM, et al. Trauma exposure and posttraumatic stress disorder in a national sample of adolescents. J Am Acad Child Adolesc Psychiatry. 2013;52:815–30. e14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Warshaw MG, Fierman E, Pratt L, Hunt M, Yonkers KA, Massion AO, et al. Quality of life and dissociation in anxiety disorder patients with histories of trauma or PTSD. Am J Psychiatry. 1993;150:1512–6.

    Article  CAS  PubMed  Google Scholar 

  3. Fang X, Brown DS, Florence CS, Mercy JA. The economic burden of child maltreatment in the United States and implications for prevention. Child Abuse Negl. 2012;36:156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kuhn S, Gallinat J. Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis. Biol Psychiatry. 2013;73:70–4.

    Article  PubMed  Google Scholar 

  5. O’Doherty DCM, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res. 2015;232:1–33.

    Article  PubMed  Google Scholar 

  6. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164:1476–88.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hayes JP, Hayes SM, Mikedis AM. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord. 2012;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patel R, Spreng RN, Shin LM, Girard TA. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2012;36:2130–42.

    Article  PubMed  Google Scholar 

  9. • Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72:305–15. Meta-analysis of structural MRI studies across psychiatric diagnoses implicating common neural substrates of mental illness.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. AJP. 2017;174:676–85. Meta-analysis of functional MRI studies across psychiatric diagnoses implicating common neural substrates of mental illness.

    Article  Google Scholar 

  11. Fonzo GA, Simmons AN, Thorp SR, Norman SB, Paulus MP, Stein MB. Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol Psychiatry. 2010;68:433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gilboa A, Shalev AY, Laor L, Lester H, Louzoun Y, Chisin R, et al. Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biol Psychiatry. 2004;55:263–72.

    Article  PubMed  Google Scholar 

  13. St Jacques PL, Botzung A, Miles A, Rubin DC. Functional neuroimaging of emotionally intense autobiographical memories in post-traumatic stress disorder. J Psychiatr Res. 2011;45:630–7.

    Article  PubMed  Google Scholar 

  14. Stevens JS, Jovanovic T, Fani N, Ely TD, Glover EM, Bradley B, et al. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J Psychiatr Res. 2013;47:1469–78.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14:417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akiki T, Averill C, Abdallah CG. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Current Psychiatry Reports. In press.

  18. Somerville LH, Jones RM, Casey BJ. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 2010;72:124–33.

    Article  PubMed  Google Scholar 

  19. Casey B, Galván A, Somerville LH. Beyond simple models of adolescence to an integrated circuit-based account: a commentary. Developmental Cognitive Neuroscience. 2016;17:128–30.

    Article  CAS  PubMed  Google Scholar 

  20. Gullone E. The development of normal fear: a century of research. Clin Psychol Rev. 2000;20:429–51.

    Article  CAS  PubMed  Google Scholar 

  21. Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin R, et al. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev Cogn Neurosci. 2017;25:128–37.

    Article  PubMed  Google Scholar 

  22. Grose-Fifer J, Rodrigues A, Hoover S, Zottoli T. Attentional capture by emotional faces in adolescence. Adv Cogn Psychol. 2013;9:81–91.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hare TA, Tottenham N, Galvan A, Voss HU, Glover GH, Casey BJ. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol Psychiatry. 2008;63:927–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cohen-Gilbert JE, Thomas KM. Inhibitory control during emotional distraction across adolescence and early adulthood. Child Dev. 2013;84:1954–66.

    Article  PubMed  Google Scholar 

  25. Heller AS, Cohen AO, Dreyfuss MFW, Casey BJ. Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Soc Cogn Affect Neurosci. 2016;11:1910–8.

    PubMed  PubMed Central  Google Scholar 

  26. McRae K, Gross JJ, Weber J, Robertson ER, Sokol-Hessner P, Ray RD, et al. The development of emotion regulation: an fMRI study of cognitive reappraisal in children, adolescents and young adults. Soc Cogn Affect Neurosci. 2012;7:11–22.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silvers JA, McRae K, Gabrieli JDE, Gross JJ, Remy KA, Ochsner KN. Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion. 2012;12:1235–47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Silvers JA, Shu J, Hubbard AD, Weber J, Ochsner KN. Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood. Dev Sci. 2015;18:771–84.

    Article  PubMed  Google Scholar 

  29. Pitskel NB, Bolling DZ, Kaiser MD, Crowley MJ, Pelphrey KA. How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Dev Cogn Neurosci. 2011;1:324–37.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stephanou K, Davey CG, Kerestes R, Whittle S, Pujol J, Yücel M, et al. Brain functional correlates of emotion regulation across adolescence and young adulthood. Hum Brain Mapp. 2016;37:7–19.

    Article  PubMed  Google Scholar 

  31. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101:8174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, et al. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS One. 2012;7:e46970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, et al. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J Neurosci. 2013;33:4584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vink M, Derks JM, Hoogendam JM, Hillegers M, Kahn RS. Functional differences in emotion processing during adolescence and early adulthood. NeuroImage. 2014;91:70–6.

    Article  PubMed  Google Scholar 

  35. • Keding TJ, Herringa RJ. Paradoxical prefrontal-amygdala recruitment to angry and happy expressions in pediatric posttraumatic stress disorder. Neuropsychopharmacology. 2016;41:2903–12. Functional MRI study showing cross-sectional increases in amygdala reactivity with age in pediatric PTSD.

    Article  PubMed  Google Scholar 

  36. Swartz JR, Carrasco M, Wiggins JL, Thomason ME, Monk CS. Age-related changes in the structure and function of prefrontal cortex-amygdala circuitry in children and adolescents: a multi-modal imaging approach. NeuroImage. 2014;86:212–20.

    Article  PubMed  Google Scholar 

  37. Paquola C, Bennett MR, Lagopoulos J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—a meta-analysis and review. Neurosci Biobehav Rev. 2016;69:299–312.

    Article  PubMed  Google Scholar 

  38. Garrett AS, Carrion V, Kletter H, Karchemskiy A, Weems CF, Reiss A. Brain activation to facial expressions in youth with PTSD symptoms. Depress Anxiety. 2012;29:449–59.

    Article  PubMed  Google Scholar 

  39. McCrory EJ, De Brito SA, Sebastian CL, Mechelli A, Bird G, Kelly PA, et al. Heightened neural reactivity to threat in child victims of family violence. Curr Biol. 2011;21:R947–8.

    Article  CAS  PubMed  Google Scholar 

  40. • McLaughlin KA, Peverill M, Gold AL, Alves S, Sheridan MA. Child maltreatment and neural systems underlying emotion regulation. J Am Acad Child Adolesc Psychiatry. 2015;54:753–62. Functional MRI study showing compensatory prefrontal recruitment during emotion regulation in maltreated adolescents when adjusting for psychiatric symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71:286–93.

    Article  PubMed  Google Scholar 

  42. Dannlowski U, Kugel H, Huber F, Stuhrmann A, Redlich R, Grotegerd D, et al. Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Hum Brain Mapp. 2013;34:2899–909.

    Article  PubMed  Google Scholar 

  43. Suzuki H, Luby JL, Botteron KN, Dietrich R, McAvoy MP, Barch DM. Early life stress and trauma and enhanced limbic activation to emotionally valenced faces in depressed and healthy children. J Am Acad Child Adolesc Psychiatry. 2014;53:800–13. e10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Malter Cohen M, Jing D, Yang RR, Tottenham N, Lee FS, Casey BJ. Early-life stress has persistent effects on amygdala function and development in mice and humans. Proc Natl Acad Sci U S A. 2013;110:18274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. • Herringa RJ, Burghy CA, Stodola DE, Fox ME, Davidson RJ, Essex MJ. Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:326–34. Functional MRI study in a longitudinal community sample of adolescents implicating enhanced amygdala-prefrontal coupling as a mechanism of stress resilience.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marusak HA, Martin KR, Etkin A, Thomason ME. Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology. 2015;40:1250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hein TC, Monk CS. Research review: neural response to threat in children, adolescents, and adults after child maltreatment—a quantitative meta-analysis. J Child Psychol Psychiatr. 2017;58:222–30.

    Article  Google Scholar 

  48. Herringa RJ, Birn RM, Ruttle PL, Burghy CA, Stodola DE, Davidson RJ, et al. Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proc Natl Acad Sci U S A. 2013;110:19119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Birn RM, Patriat R, Phillips ML, Germain A, Herringa RJ. Childhood maltreatment and combat posttraumatic stress differentially predict fear-related fronto-subcortical connectivity. Depress Anxiety. 2014;31:880–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Elsey J, Coates A, Lacadie CM, McCrory EJ, Sinha R, Mayes LC, et al. Childhood trauma and neural responses to personalized stress, favorite-food and neutral-relaxing cues in adolescents. Neuropsychopharmacology. 2015;40:1580–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fonzo GA, Huemer J, Etkin A. History of childhood maltreatment augments dorsolateral prefrontal processing of emotional valence in PTSD. J Psychiatr Res. 2016;74:45–54.

    Article  PubMed  Google Scholar 

  52. Carrion VG, Weems CF, Watson C, Eliez S, Menon V, Reiss AL. Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: an MRI study. Psychiatry Res. 2009;172:226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Keding TJ, Herringa RJ. Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology. 2015;40:537–45. Structural MRI study showing cross-sectional decreases in hippocampal volume with age in pediatric PTSD.

    Article  PubMed  Google Scholar 

  54. Morey RA, Haswell CC, Hooper SR, De Bellis MD. Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology. 2016;41:791–801.

    Article  PubMed  Google Scholar 

  55. Crozier JC, Wang L, Huettel SA, De Bellis MD. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter? Dev Psychopathol. 2014;26:491–513.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang P, Wu M-T, Hsu C-C, Ker J-H. Evidence of early neurobiological alternations in adolescents with posttraumatic stress disorder: a functional MRI study. Neurosci Lett. 2004;370:13–8.

    Article  CAS  PubMed  Google Scholar 

  57. • Wolf RC, Herringa RJ. Prefrontal-amygdala dysregulation to threat in pediatric posttraumatic stress disorder. Neuropsychopharmacology. 2016;41:822–31. Functional MRI study showing cross-sectional decreases in amygdala-vmPFC coupling with age in pediatric PTSD.

    Article  PubMed  Google Scholar 

  58. Cisler JM, Scott Steele J, Smitherman S, Lenow JK, Kilts CD. Neural processing correlates of assaultive violence exposure and PTSD symptoms during implicit threat processing: a network-level analysis among adolescent girls. Psychiatry Res. 2013;214:238–46.

    Article  PubMed  Google Scholar 

  59. Kalisch R, Gerlicher AMV. Making a mountain out of a molehill: on the role of the rostral dorsal anterior cingulate and dorsomedial prefrontal cortex in conscious threat appraisal, catastrophizing, and worrying. Neurosci Biobehav Rev. 2014;42:1–8.

    Article  PubMed  Google Scholar 

  60. Lee H, Heller AS, van Reekum CM, Nelson B, Davidson RJ. Amygdala-prefrontal coupling underlies individual differences in emotion regulation. NeuroImage. 2012;62:1575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  61. • Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17:652–66. Comprehensive review examining putative neural mechanisms linking childhood maltreatment to psychopathology, with consideration of both vulnerability and compensatory brain changes.

    Article  CAS  PubMed  Google Scholar 

  62. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C: American Psychiatric Association; 2013.

    Book  Google Scholar 

  63. • Krause-Utz A, Frost R, Winter D, Elzinga BM. Dissociation and alterations in brain function and structure: implications for borderline personality disorder. Curr Psychiatry Rep. 2017;19:6. Review of neuroimaging studies implicating potential brain substrates of dissociative symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lanius RA, Vermetten E, Loewenstein RJ, Brand B, Schmahl C, Bremner JD, et al. Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry. 2010;167:640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nicholson AA, Densmore M, Frewen PA, Théberge J, Neufeld RW, McKinnon MC, et al. The dissociative subtype of posttraumatic stress disorder: unique resting-state functional connectivity of basolateral and centromedial amygdala complexes. Neuropsychopharmacology. 2015;40:2317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tursich M, Ros T, Frewen PA, Kluetsch RC, Calhoun VD, Lanius RA. Distinct intrinsic network connectivity patterns of post-traumatic stress disorder symptom clusters. Acta Psychiatr Scand. 2015;132:29–38.

    Article  CAS  PubMed  Google Scholar 

  67. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  68. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.

    Article  CAS  PubMed  Google Scholar 

  69. • Patriat R, Birn RM, Keding TJ, Herringa RJ. Default-mode network abnormalities in pediatric posttraumatic stress disorder. J Am Acad Child Adolesc Psychiatry. 2016;55:319–27. Functional MRI study of pediatric PTSD examining large scale intrinsic brain networks.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liberzon I. Searching for intermediate phenotypes in posttraumatic stress disorder. Biological Psychiatry. 2017 In press. Available from: http://www.biologicalpsychiatryjournal.com/article/S0006-3223(17)31664-5/fulltext

  71. McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41:3–23.

    Article  CAS  PubMed  Google Scholar 

  72. Tanapat P, Galea LAM, Gould E. Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci. 1998;16:235–9.

    Article  CAS  PubMed  Google Scholar 

  73. Liston C, Gan W-B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. PNAS. 2011;108:16074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Howell BR, Grand AP, McCormack KM, Shi Y, LaPrarie JL, Maestripieri D, et al. Early adverse experience increases emotional reactivity in juvenile rhesus macaques: relation to amygdala volume. Dev Psychobiol. 2014;56:1735–46.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Callaghan BL, Richardson R. Early experiences and the development of emotional learning systems in rats. Biol Mood Anxiety Disord. 2013;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cruceanu C, Matosin N, Binder EB. Interactions of early-life stress with the genome and epigenome: from prenatal stress to psychiatric disorders. Current Opinion in Behavioral Sciences. 2017;14:167–71.

    Article  Google Scholar 

  77. Klengel T, Binder EB. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron. 2015;86:1343–57.

    Article  CAS  PubMed  Google Scholar 

  78. Girgenti M, Hare B, Ghosal S, Duman R. Molecular and cellular consequences of stress: implications in PTSD. Current Psychiatry Reports. In press.

  79. Tyrka AR, Ridout KK, Parade SH. Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: associations in children and adults. Dev Psychopathol. 2016;28:1319–31.

    Article  PubMed  Google Scholar 

  80. Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol Psychiatry. 2016;79:87–96.

    Article  CAS  PubMed  Google Scholar 

  81. Palma-Gudiel H, Córdova-Palomera A, Leza JC, Fañanás L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: a critical review. Neurosci Biobehav Rev. 2015;55:520–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Herringa’s work as reviewed here has been supported by the National Institute of Mental Health (K08 MH100267), the American Academy of Child & Adolescent Psychiatry, the Brain and Behavior Research Foundation, and the University of Wisconsin Institute for Clinical and Translational Research (NIH/NCATS UL1TR000427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Herringa.

Ethics declarations

Conflict of Interest

The author declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Disaster Psychiatry: Trauma, PTSD, and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herringa, R.J. Trauma, PTSD, and the Developing Brain. Curr Psychiatry Rep 19, 69 (2017). https://doi.org/10.1007/s11920-017-0825-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0825-3

Keywords

Navigation